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ABSTRACT

Depinning of an interface from a rough self–affine wall delimiting an attractive substrate

is described in terms of directed paths on a square lattice. Short–range interactions are

assumed and the phase diagram is determined by transfer matrix methods for several values

of ζW , the roughness exponent of the wall. For all ζW the following scenario is observed.

At very low temperature T , the interface is not pinned for wall attraction energies below

a certain ζW–dependent, nonzero threshold. This contrasts with the case of smooth walls,

for which the threshold is zero. In a range of attraction energies just below the threshold,

a pinning transition first occurs, as T increases, followed by a depinning one (reentrant

depinning). This unusual reentrance phenomenon, in which, upon increasing T , dewetting

is followed by wetting, is peculiar of self–affine roughness and does not occur, e.g., with

a periodic substrate corrugation. The nature of both wetting and dewetting transitions is

determined by the value of ζW . As found in related work, the two transitions are both

continuous, or both first–order, according to whether ζW < 1/2, or ζW > 1/2, respectively.

The border value ζ0 = 1/2 coincides with the intrinsic roughness of the interface in the bulk.
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1. INTRODUCTION

The properties of an interface are strongly influenced by the presence of a substrate.

In wetting phenomena, for example, the interface between two coexisting phases unbinds

from an attractive substrate (wetting transition) as the temperature is increased [1]. While

wetting is rather well understood in pure systems, the effects of disorder [2–5] are still actively

investigated. Of particular interest is the case of geometric surface disorder (roughness) and

its effects on location and nature of wetting transitions [2].

Here we focus our attention on some effects of self–affine roughness on the wetting phase

diagram. Self–affine roughness is often encountered in experimental samples [6]. Self–affinity

implies that the average (transverse) height fluctuation of a sample of (longitudinal) linear

size X, ∆WX , scales like ∆WX ∼ XζW . The role of this kind of roughness in both complete

and critical wetting phenomena has been investigated by several methods in recent years

[7,8]. Most recently it was found [9,10] that self–affine roughness changes critical wetting

transitions into first–order when the substrate roughness, ζW , exceeds the roughness of the

interface in the bulk, ζ0. This is expected to hold for both ordered and disordered bulks, and

with short range substrate forces. As we show here, this change of transition order is not

the only effect of surface roughness on interface properties. Self–affine roughness radically

modifies the wetting phase diagram, in a way which can be important in experiments and

applications [11].

In the present paper we study the wetting phase diagram of a generalization with rough

wall [9] of a standard interfacial model with short range forces in 2D [12]. Our results

give evidence of some remarkable and unusual features of the phase diagram, which, at a

qualitative level, should be considered as generic for wetting on self–affine rough substrates.

The most notable feature of the phase diagram is a reentrant interface depinning in the

whole range of roughnesses (0 < ζW < 1). This reentrance, which amounts to a dewetting

followed by a wetting transition as the temperature is raised, occurs both in regimes when

the transitions are continuous, and when they are first–order.
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This paper is organized as follows. In the next section we introduce the model and

describe our transfer matrix method. In section 3 we discuss the main results for the phase

diagram. In the last section further general considerations and conclusions are given.

2. THE MODEL

Let us consider a 2D square lattice and denote by x and y the integer coordinates of

its sites. Self–avoiding paths (partially) directed in the x direction, like that shown in Fig.

1, are considered as possible interface configurations. Because of the directed nature of the

paths, a particular configuration is determined by giving the ordinate y = hx of the left–

hand extremity of each one of its horizontal steps. We suppose that the substrate wall is also

represented by a directed path defined in terms of a set of step ordinates {Wx} defined in the

same way as {hx}. The impenetrable character of the wall implies obviously that hx ≥Wx.

Moreover, we impose the following restrictions on the sets {hx} and {Wx}: a) hx+1 −

hx = 0,±1; b) Wx+1 −Wx = ±1. Such restrictions are imposed merely for computational

convenience: removing or modifying them would not change the main qualitative features

of our results.

The sets {Wx} are randomly generated by an iterative algorithm [11,13]. This algorithm

produces directed paths in 2D obeying the restrictions described above and the scaling

relation

|Wx+∆x −Wx| ∼ |∆x|
ζW (1)

In this equation and in the following the overbars indicate quenched averages over samples

of {Wx}.

To each interface configuration with a projection of length X on the x axis, is associated

an energy EX

EX =
X∑
x

[E(1 + |zx − zx−1 + wx|)− Uδzx,0] (2)

where zx = hx −Wx and wx = Wx −Wx−1. In eq.(2) E (E > 0) is the energy cost of each

interface step and −U (U > 0) is the energy gain of an interface contact with the attracting
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wall. Only horizontal steps of the interface paths in contact with the wall are prized by an

energy −U : this is a particular feature of our model. This choice is not mandatory and

different conventions would not change the basic qualitative results.

At a finite temperature T the properties of the interface can be studied in terms of the

partition function

ZX =
∑
{zx}

e
−
EX
kBT = ωX

∑
{zx}

ωn⊥knc. (3)

where ω = e−E/kBT and k = eU/kBT are the fugacities associated with each (horizontal or

vertical) step of the path, and to each horizontal step on the wall, respectively. The sum is

done over the ensemble of all the directed paths (determined here by {zx}) compatible with

the choosen profile of the wall. n⊥ and nc are the number of vertical steps of the interfacial

path and the number of its horizontal steps on the wall, respectively.

The interface partition depends on the temperature T and the energies U and E through

the dimensionless parameters u = U/E and t = kBT/E. We refer to u and t as to wall

attraction strength and temperature, respectively.

Making use of the transfer matrices Twx defined as follows

(Tw)m,n = [δm,n−w + ω(δm,n−w−1 + δm,n−w+1)]k
δm,0, w = ±1 (4)

the partition function (3) can be expressed as

ZX = ωX
∑
l,z

(
X∏
x=1

Twx

)
l,z

φ0(z) (5)

The function φ0 establishes particular x = 0 conditions for the interfacial paths. For exam-

ple, for paths with the left extremity on the wall, we put φ0(z) = δz,0.

A wall profile corresponds to a particular sequence of factors Twx in the product of eq.(5).

For asymptotically large systems (X →∞), the partition function ZX can be expressed in

terms of the largest Lyapunov eigenvalue λmax [14] of the matrix product in eq. (5) as

ZX ∼ (ωλmax)
X . Useful tools for the numerical calculation of λmax, are the normalized

vectors ~ψx defined by the recursion relation
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~ψx =
1

nx
Twx

~ψx−1 (6)

with ‖~ψx‖ =
∑
z ψx(z), nx = ‖Twx

~ψx−1‖ and ~ψ0 ≡ ~φ0. Because of the particular normaliza-

tion rule, it is simple to see that the z–th component of the vector ~ψx corresponds to the

probability that the path at x is at a distance z from the wall [2,8]. This interpretation

of ~ψx suggests our choice of ||~ψx||. For a given wall profile, the above definitions allow to

express the Lyapunov eigenvalue λmax as

λmax = lim
X→∞

[
X∏
x=1

nx

] 1
X

= exp

(
lim
X→∞

1

X

X∑
x=1

lnnx

)
(7)

Finally, we can consider the quenched dimensionless free energy density, f , given by

f = − limX→∞ lnZX/X. With the last definitions this can be written as

f = −lnωλmax = − lnω − lim
X→∞

1

X

X∑
x=1

lnnx. (8)

3. WETTING PHASE DIAGRAM

The depinning transition occurs because, e.g., at a fixed temperature, the interface re-

mains bound to the wall only for sufficiently high values of u. In the case of a flat wall, i.

e. {Wx = constant ∀x}, the value of u, uc, above which the interface is pinned has been

calculated exactly [15,12,2]. The exact formulas allow to write the wall critical attraction

strength, at which the interface depinning takes place, in the form

uc(t) = t ln [(1 + 2 exp(−1/t))/(1 + exp(−1/t))] (9)

from which one can see that limt→0 uc(t) = 0. On the other hand, if we denote by P0 the

average fraction of horizontal interface steps on the wall, P0 = limX→∞〈nc〉/X, with brackets

indicating canonical thermal average, from the same formulas one can see that P0 vanishes

continuously and linearly in u− uc when the line u = uc(t) is approached from above.

When dealing with random walls, the calculation of f or P0 for each particular {Wx} can

only be done numerically. To minimize finite size effects due to truncations of the transfer
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matrices, in our calculations we always considered matrix sizes much larger than the mean

square perpendicular width of the self–affine walls. In practice we used transfer matrices as

large as 104 × 104 in the roughest case, corresponding to ζW = ln 12/ ln 32 ' 0.717. With

this roughness X = 105 was reached. In addition one has to average over different {Wx}

in order to get f and P0. We could sample at most 10 or 15 different {Wx} in the most

favorable cases, due to the large X’s needed to extract precisely f and P0.

At fixed t, as the transition is approached from above (viz. u > uc(t)) the interface free

energy density (8) is negative and increasing, with decreasing u; at u = uc(t) it matches the

bulk interface free energy density fbulk = − lnω(1+2ω). Thus, the depinning transition can

be located where the interface excess free energy ∆f = f − fbulk vanishes. The calculation

of P0 offers an alternative way of locating the transition, by identifying the conditions under

which this quantity first becomes zero.

Once obtained the free energy f and P0 for a sufficient number of wall profiles we eval-

uated both f and P0. We could observe that both quantities allow to locate the transition

with approximately the same precision. A careful numerical study of how P0 or ∆f approach

zero gave us further information on whether the transition is continuous or first–order [9].

Fig. 2 summarizes the results we have obtained by a systematic calculation of f as a

function of t and u, for 5 different values of ζW . The curves in the figure represent the

behavior of uc versus t. uc was determined numerically as the value of u below which

|∆f | ≤ 0.0001 as u was changed in steps of 0.001.

Looking at the transition curves for rough walls in Fig. 2, we note two main differences

from the flat case:

a) For all ζW , uc(t) is positive and finite. As t → 0 the minimal attraction strength

needed to pinn an interface, uc(0), is finite and increases as the wall roughness ζW

increases.

b) All the curves u = uc(t) present a minimum at tR. As a consequence, there is a

temperature interval, in which uc is a decreasing function of t.
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The minimum in the transition lines is responsible of a remarkable reentrance effect. In

fact, let us focus our attention on one of the u = uc(t) lines in Fig. 2. As in an experiment,

can monitor the interface behavior at fixed u, by varying t. We identify three different

regimes:

1) for u < uc(tR) interface pinning is impossible, no matter how low t is;

2) for uc(tR) < u < uc(0) as the temperature is increased, the interface undergoes two

transitions: i) at an effective temperature tD < tR we find an unexpected pinning

transition: the substrate is wet for t < tD and dewets at t = tD; ii) at some tW > tR

a more usual depinning (wetting) transition follows;

3) for u > uc(0) as the temperature is increased the interface passes from a pinned to a

depinned state at some tW .

A detailed study of the behavior of tR for ζW approaching zero is not feasible due to the

necessity of generating extremely long walls in order to distinguish very low from strictly

zero roughness. The same calculations for ζW approaching 1 are again very time consuming

mainly because of the large dimension of the transfer matrices required to avoid finite size

effects. However, our results suggest rather clearly that tR approaches zero for both ζW → 0

and ζW → 1. Thus, in these two limits the reentrance desappears. In Fig. 2 we draw a line

which joins the points (tR, u(tR)) of our curves with (0, 0) and (0, 1). This line should give

a qualitative idea of the dependence of tR on ζW .

Another interesting aspect of the phase diagram is that connected to the nature of the

transitions involved. The continuous or discontinuous character of the wetting transitions

upon varying ζW was already discussed in ref. [9] by analyzing the way in which P0 ap-

proaches zero for u → uc(t)+. While in this work we focus our attention mainly on the

wetting phase diagram, we made also a study of the nature of the reentrant dewetting tran-

sition for two ζW values, respectively below and above ζW = 1/2. In the first case (ζW = 0.4)

we found evidence of a continuous depinning, while in the latter (ζW = 0.6) it appeared dis-
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continuous. These results are in agreement with those of ref. [9] for wetting transitions,

and suggest that also for dewetting ζW = 1/2 could be the border line roughness between

continuous and discontinuous depinning.

4. CONCLUSIONS

The results presented in the previous section are worth discussing further.

At t = 0, in order to decide whether the interface is pinned or not, we need only to

compare the ground state energy in the bulk with the lowest energy of a state in which the

interface is bound to the substrate. In the bulk, the state of lowest possible energy is clearly

given by a straight configuration (n⊥ = 0). A bound state will have an energy relative to

this unbound ground state equal to En⊥ − Unc. n⊥ and nc of course depend on the wall

configuration to which this bound state refers. Clearly uc(0) is determined by the condition

under which this energy difference between the two states vanishes: uc(0) = limX→∞ n⊥/nc.

The fact that bound ground state configurations satisfy this limit condition with uc(0) > 0

is a nontrivial property of self–affine substrates. On a periodically corrugated substrate with

average horizontal slope this limit property would not be satisfied. In this case, for u very

close to zero, the bound ground state configuration is one in which n⊥ = 0, corresponding to

a straight interface touching the attractive tips of the periodically corrugated wall. Thus, we

would have n⊥ = 0 and nc 6= 0, and, consequently, uc(0) = 0, like in a flat case. We conclude

that a remarkable property of self–affine substrates is that they can support ground state

interface configurations with limX→∞ n⊥/nc > 0.

We also verified by explicit calculations for simple periodically corrugated walls, that uc

is always an increasing function of t, contary to what happens in the self–affine case. Indeed,

a remarkable property of self–affine substrates, for which uc(0) > 0 is clearly a necessary

but not sufficient condition, is the monotonically decreasing character of the curve u = uc(t)

in the interval (0, tR). This feature implies that, as soon as t rises above zero, an interface

can be more easily bound to the rough substrate. This clearly shows that there is a very

nontrivial energy–entropy interplay in the pinning mechanism when self–affine roughness is
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involved.

The calculations we presented in this work have been limited to 2D and to strictly short–

range forces. For the moment the extension of these calculations to 3D is computationally

unfeasible, and even the inclusion of long–range potentials would pose serious additional

difficulties in our calculations. However, in 3D we expect that the main features of the phase

diagram would persist. Concerning the effect of long–range forces, which should certainly be

included in more realistic calculations to compare with experiments, we can only conjecture

that they would not modify the main result obtained here, i. e. the reentrance. However,

there is at least one experimental system, namely interfaces in superconductors [16], for

which a short range description should be fully adequate.
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FIGURES

Fig. 1 Example of rough substrate wall (continuous path) and interface configuration (dotted

path).

Fig. 2 Interface phase diagram for rough self–affine walls in the t–u plane. The curves u =

uc(t) are shown for five different values of the roughness exponent ζW . The light

continuous line corresponds to u = uc(T ) for a flat wall as given by eq. (9). The light

dashed line gives a qualitative idea of the dependence of tR on ζW .
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